BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 52 (11), 3471—3472 (1979)

Studies on the Configuration of N-Cyclohexylideneanilines with 13 C-NMR Spectroscopy

Masato Yoshida and Michio Kobayashi*

Department of Chemistry, Faculty of Science, Tokyo Metropolitan University,

Fukazawa, Setagaya-ku, Tokyo 158

(Received May 1, 1979)

Synopsis. ¹³C-NMR chemical shifts and the rates of thermal *E-Z* isomerizations of *N*-cyclohexylideneanilines have been determined and the substituent effects discussed.

In a previous paper the existence of two types of conjugation¹⁾ in *N*-benzylideneanilines (**1a**) was reported. One is conjugation between the π -electrons of the carbon-nitrogen double bond and aromatic ring (**1b**), and the other is conjugation between the lone pair electrons of the nitrogen and aromatic ring (**1c**).

$$\bigoplus_{H} \operatorname{Con}_{H} \operatorname{C$$

There is no type 1c conjugation when the dihedral angle between the C=N— plane and imino benzene ring is 0°, whereas an angle of 90° represents the optimum conditions. N-Cyclohexylideneanilines appear to be suitable compounds to study this type of conjugation since the imino benzene rings are known to rotate by about 90° out of the C=N— plane. The C=N— plane. The C=N— plane. The C=N— have been studied at several temperatures and the substituent effects discussed in connection with the thermal isomerism between the C=N— plane.

Results and Discussion

Thermal isomerization between the E and Z forms of the N-benzylideneanilines is known to readily occur. In N-cyclohexylideneaniline, thermal isomerization between the forms $\bf A$ and $\bf B$ shown below is expected.

The ¹³C-NMR spectra of **2**—**5** were measured at room temperature in CDCl₃, and the $\delta_{\rm C}$ values for **2**—**5** are given in Table 1. The differences in value of $\delta_{\rm C-2'}$ and $\delta_{\rm C-6'}$ (or $\delta_{\rm C-3'}$ and $\delta_{\rm C-5'}$) for **2**—**5** indicates that the configurations of **2**—**5** are fixed within the NMR time scale at room temperature. As shown in Fig. 1b the ¹³C-NMR of C-2'-6' of compound **6** could

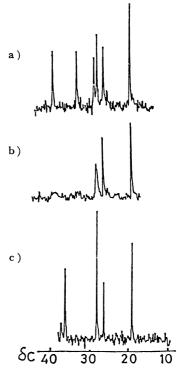


Fig. 1. ¹³C-NMR spectra of compound 6 at a) −50 °C in CDCl₃, b) at room temperature in CDCl₃, and c) at 100 °C in DMSO-d₀.

Table 1. Carbon-13 chemical shifts of **2—6**At room temperature

	2	3	4	5	6ª)
C-1	157.0	154.9	150.0	144.0	154.5
C-2,6	120.0	119.3	119.6	120.9	127.2
C-3,5	125.0	130.4	128.5	114.1	123.1
C-4	143.5	124.9	122.7	155.7	142.2
C-1'	176.4	175.2	174.5	175.2	175.6
C-2'	32.1	31.5	31.1	31.2	32.1
C-3'	27.8	27.4	27.4	27.7	26.9
C-4'	25.6	25.4	25.6	25.9	25.2
C-5′	27.8	27.6	27.7	27.9	27.7
C-6'	39.3	39.0	39.2	39.5	38.3

a) At -50 °C.

not be observed as a set of five signals. Five 13 C-NMR signals of each C-2'-6' were observed at -50 °C, while at 100 °C the signals of C-2' and C-6' (also C-3' and C-5') coalesced and the 13 C-NMR signals of C-2'-6' appeared as three signals. This indicates that the thermal isomerization between **6A** and **6B** is slower at -50 °C and faster at 100 °C than the

Table 2. Coalescence temperatures (T_c) of $C_{2'}$, $C_{a'}$ and ΔG^* values for $2-6^a$)

	$\nu C_2' - \nu C_6'$	$T_{ m e}/{ m K}^{ m b)}$	$\Delta G^*/\mathrm{kcal\ mol^{-1}}$
2	106.20	348	16.7
3	109.86	398	19.2
4	118.14	>413	>19.7
5	124.51	>413	>19.7
6	92.77	328	15.7

a) Solv. DMSO- d_6 for **2**—**5** and CDCl₃ for **6**. b) Accuracy: ± 5 K.

NMR time scale. Consequently, at elevated temperatures, the thermal isomerizations in **2—5** are expected to be observable by NMR. The ¹³C-NMR spectra of **2—6** were measured at several temperatures, and the coalescence temperatures ($T_{\rm c}$) for C-2′ and C-6′ signals determined, and the ΔG^* values calculated. The results are summarized in Table 2.

Type 1b conjugation should not be possible when the imino benzene ring is rotated out of the C=Nplane by approximately 90°. Interaction between the N-lone pair and imino benzene ring however becomes important. Table 1 shows that δ_{C-1} is very little affected by the substituents of the aromatic ring in comparison with $\delta_{C-\alpha}$ of N-benzylideneanilines (PhCH=N-C₆H₄-R-p) whose imino benzene rings are rotated approximately 50°.3) This suggests that the substituents of the aromatic ring do not affect the electron density on the carbon atom of C=N- when the imino benzene ring is rotated out of the C=Nplane by approximately 90°. As shown in Table 2, the ΔG^* of 2 and 3 having electron-withdrawing groups are smaller than those of 4 and 5. This can be explained by assuming a linear transition state C for the thermal isomerization between forms A and B.4)

In this transition state, the hybridization of the N atom is of the sp type. The transition state (\mathbf{C}) should be stabilized by the electron-withdrawing substituent on the imino benzene ring to a greater extent than in the ground state, since the delocalization of the N-lone pair into the imino benzene ring will be easier with a linear structure. Electron-withdrawing substituents on the imino benzene ring will assist this delocalization and decrease ΔG^* .

Experimental

N-Gyclohexylideneanilines²⁾ were prepared by condensation between the corresponding anilines and cyclohexanone diethyl acetal:⁵⁾ bp (mp): **2**; 176 °C/6 mmHg, **3**; 187 °C/5 mmHg, **4**; 140 °C/18 mmHg, (lit,²⁾ 156 °C/30 mmHg), **5**; 76—77 °C (mp), **6**; 57—58 °C (mp).

¹³C-NMR chemical shifts were determined at room temperature in $CDCl_3$ with a JEOL Fx-60 FT spectrometer. The accuracies of chemical shifts were approximately 0.1 ppm (data points; 4096, sampling time; 900 ms, pulse flipping angle; 45°). The coalescence temperatures were determined in DMSO- d_6 well-dried with molecular sieves, and the values of the activation free energy calculated using the following equation, ⁶⁾

$$k = \pi v_{ab}/\sqrt{2} = (KT/h) \exp(-\Delta G^*/RT)$$
.

References

- 1) M. Yoshida, H. Minato, and M. Kobayashi, *Chem. Lett.*, **1976**, 1097.
 - 2) H. Saito and K. Nukada, Tetrahedron, 22, 3313 (1966).
- 3) $\delta_{C-\alpha}$ of N-benzylideneanilines; R=NO₂ 162.79, R=H 160.01, R=OMe 157.95. N. Inamoto, K. Kushida, S. Masuda, H. Ohta, S. Satoh, Y. Tamura, K. Tokumaru, K. Tori, and M. Yoshida, Tetrahedron Lett., 1974, 3617.
- 4) C. G. McCarty, "The Chemistry of The Carbon-Nitrogen Double Bond," ed by S. Patai, Interscience, London (1970), Chap. 9.
- 5) U. Schmidt and P. Grafen, Justus Liebigs Ann. Chem., **656**, 97 (1962).
- 6) D. K. Dalling, D. M. Grant, and L. F. Johnson, J. Am. Chem. Soc., 93, 3678 (1971).